Refine Your Search

Topic

Author

Search Results

Technical Paper

Application of the CTC Model to Predict Combustion and Pollutant Emissions in a Common-Rail Diesel Engine Operating with Multiple Injections and High EGR

2012-04-16
2012-01-0154
Multiple injections and high EGR rates are now widely adopted for combustion and emissions control in passenger car diesel engines. In a wide range of operating conditions, fuel is provided through one to five separated injection events, and recirculated gas fractions between 0 to 30% are used. Within this context, fast and reliable multi-dimensional models are necessary to define suitable injection strategies for different operating points and reduce both the costs and time required for engine design and development. In this work, the authors have applied a modified version of the characteristic time-scale combustion model (CTC) to predict combustion and pollutant emissions in diesel engines using advanced injection strategies. The Shell auto-ignition model is used to predict auto-ignition, with a suitable set of coefficients that were tuned for diesel fuel.
Technical Paper

Reduced Kinetic Mechanisms for Diesel Spray Combustion Simulations

2013-09-08
2013-24-0014
Detailed chemistry represents a fundamental pre-requisite for a realistic simulation of combustion process in Diesel engines to properly reproduce ignition delay and flame structure (lift-off and soot precursors) in a wide range of operating conditions. In this work, the authors developed reduced mechanisms for n-dodecane starting from the comprehensive kinetic mechanism developed at Politecnico di Milano, well validated and tested in a wide range of operating conditions [1]. An algorithm combining Sensitivity and Flux Analysis was employed for the present skeletal reduction. The size of the mechanisms can be limited to less than 100 species and incorporates the most important details of low-temperature kinetics for a proper prediction of the ignition delay. Furthermore, the high-temperature chemistry is also properly described both in terms of reactivity and species formation, including unsaturated compounds such as acetylene, whose concentration controls soot formation.
Technical Paper

A Comprehensive Model to Predict the Initial Stage of Combustion in SI Engines

2013-04-08
2013-01-1087
A correct prediction of the initial stages of the combustion process in SI engines is of great importance to understand how local flow conditions, fuel properties, mixture stratification and ignition affect the in-cylinder pressure development and pollutant formation. However, flame kernel growth is governed by many interacting processes including energy transfer from the electrical circuit to the gas phase, interaction between the plasma channel and the flow field, transition between different combustion regimes and gas expansion at very high temperatures. In this work, the authors intend to present a comprehensive, multi-dimensional model that can be used to predict the initial combustion stages in SI engines. In particular, the spark channel is represented by a set of Lagrangian particles where each one of them acts as a single flame kernel.
Technical Paper

A Numerical Study on the Sensitivity of Soot and NOx Formation to the Operating Conditions in Heavy Duty Engines

2018-04-03
2018-01-0177
In this paper, computation fluid dynamics (CFD) simulations are employed to describe the effect of flow parameters on the formation of soot and NOx in a heavy duty engine under low load and high load. The complexity of diesel combustion, specially when soot, NOx and other emissions are of interest, requires using a detailed chemical mechanism to have a correct estimation of temperature and species distribution. In this work, Multiple Representative Interactive Flamelets (MRIF) method is employed to describe the chemical reactions, ignition, flame propagation and emissions in the engine. A phenomenological model for soot formation, including soot nucleation, coagulation and oxidation with O2 and OH is incorporated into the flamelet combustion model. Different strategies for modelling NOx are chosen to take into account the longer time scale for NOx formation. The numerical results are compared with experimental data to show the validity of the model for the cases under study.
Technical Paper

3D-CFD Methodologies for a Fast and Reliable Design of Ultra-Lean SI Engines

2022-06-14
2022-37-0006
The continuous pursuit of higher combustion efficiencies, as well as the possible usage of synthetic fuels with different properties than fossil-ones, require reliable and low-cost numerical approaches to support and speed-up engines industrial design. In this context, SI engines operated with homogeneous ultra-lean mixtures both characterized by a classical ignition configuration or equipped with an active prechamber represent the most promising solutions. In this work, for the classical ignition arrangement, a 3DCFD strategy to model the impact of the ignition system type on the CCV is developed using the RANS approach for turbulence modelling. The spark-discharge is modelled through a set of Lagrangian particles, whose velocity is modified with a zero-divergence perturbation at each discharge event, then evolved according to the Simplified Langevin Model (SLM) to simulate stochastic interactions with the surrounding gas flow.
Journal Article

A Constant Equivalence Ratio Multi-Zone Approach for a Detailed and Fast Prediction of Performances and Emission in CI Engines

2022-03-29
2022-01-0381
The paper illustrates and validates a novel predictive combustion model for the estimation of performances and pollutant production in CI engines. The numerical methodology was developed by the authors for near real-time applications, while aiming at an accurate description of the air mixing process by means of a multi-zone approach of the air-fuel mass. Charge stratification is estimated via a 2D representation of the fuel spray distribution that is numerically derived by an axial one-dimensional control-volume description of the direct injection. The radial coordinate of each control volume is reconstructed a posteriori by means of a local distribution function. Fuel mass clustered in each zone is further split in ‘liquid’, ‘unburnt’ and ‘burnt’ sub-zones, given the local properties of the fuel spray control volumes with respect to space-time location of modelled ignition delay, liquid length, and flame lift-off.
Technical Paper

Modeling Fuel-Air Mixing, Combustion and Soot Formation with Ducted Fuel Injection Using Tabulated Kinetics

2022-03-29
2022-01-0403
Ducted Fuel Injection (DFI) has the potential to reduce soot emissions in Diesel engines thanks to the enhanced mixing rate resulting from the liquid fuel flow through a small cylindrical pipe located at a certain distance from the nozzle injector hole. A consolidated set of experiments in constant-volume vessel and engine allowed to understand the effects of ambient conditions, duct geometry and shape on fuel-air mixing, combustion and soot formation. However, implementation of this promising technology in compression-ignition engines requires predictive numerical models that can properly support the design of combustion systems in a wide range of operating conditions. This work presents a computational methodology to predict fuel-air mixing and combustion with ducted fuel injection. Attention is mainly focused on turbulence and combustion modelling.
Technical Paper

A 3D-CFD Methodology for Combustion Modeling in Active Prechamber SI Engines Operating with Natural Gas

2022-03-29
2022-01-0470
Active prechamber combustion systems for SI engines represent a feasible and effective solution in reducing fuel consumption and pollutant emissions for both marine and ground heavy-duty engines. However, reliable and low-cost numerical approaches need to be developed to support and speed-up their industrial design considering their geometry complexity and the involved multiple flow length scales. This work presents a CFD methodology based on the RANS approach for the simulation of active prechamber spark-ignition engines. To reduce the computational time, the gas exchange process is computed only in the prechamber region to correctly describe the flow and mixture distributions, while the whole cylinder geometry is considered only for the power-cycle (compression, combustion and expansion). Outside the prechamber the in-cylinder flow field at IVC is estimated from the measured swirl ratio.
Technical Paper

CFD Modeling of Impinging Sprays Under Large Two-Stroke Marine Engine-Like Conditions

2022-03-29
2022-01-0493
To improve the combustion and emission characteristics of the large-bore marine engines, the spray is usually designed as an inter-spray impingement to promote the fuel-air mixing process, which implies frequent droplet collisions. Properly describing the collision dynamics of liquid droplets has been of interest in the field of spray modeling for marine engine applications. In this context, this work attempts to develop an accurate and efficient methodology for modeling impinging sprays under engine-like conditions. Experimental validations in terms of spray penetration and morphology are initially carried out at different operating conditions considering the parametric variations of ambient temperature and pressure, where the measurements are performed on a large-scale constant volume chamber with two symmetrical injectors.
Technical Paper

Automatic Mesh Generation for CFD Simulations of Direct-Injection Engines

2015-04-14
2015-01-0376
Prediction of in-cylinder flows and fuel-air mixing are two fundamental pre-requisites for a successful simulation of direct-injection engines. Over the years, many efforts were carried out in order to improve available turbulence and spray models. However, enhancements in physical modeling can be drastically affected by how the mesh is structured. Grid quality can negatively influence the prediction of organized charge motion structures, turbulence generation and interaction between in-cylinder flows and injected sprays. This is even more relevant for modern direct injection engines, where multiple injections and control of charge motions are employed in a large portion of the operating map. Currently, two different approaches for mesh generation exist: manual and automatic. The first makes generally possible to generate high-quality meshes but, at the same time, it is very time consuming and not completely free from user errors.
Technical Paper

Combustion Modeling in Heavy Duty Diesel Engines Using Detailed Chemistry and Turbulence-Chemistry Interaction

2015-04-14
2015-01-0375
Diesel combustion is a very complex process, involving a reacting, turbulent and multi-phase flow. Furthermore, heavy duty engines operate mainly at medium and high loads, where injection durations are very long and cylinder pressure is high. Within such context, proper CFD tools are necessary to predict mixing controlled combustion, heat transfer and, eventually, flame wall interaction which might result from long injection durations and high injection pressures. In particular, detailed chemistry seems to be necessary to estimate correctly ignition under a wide range of operating conditions and formation of rich combustion products which might lead to soot formation. This work is dedicated to the identification of suitable methodologies to predict combustion in heavy-duty diesel engines using detailed chemistry.
Technical Paper

Automatic Mech Generation for Full-Cycle CFD Modeling of IC Engines: Application to the TCC Test Case

2014-04-01
2014-01-1131
The definition of a robust methodology to perform a full-cycle CFD simulation of IC engines requires as first step the availability of a reliable grid generation tool, which does not only have to guarantee a high quality mesh but also has to prove to be efficient in terms of required time. In this work the authors discuss a novel approach entirely based on the OpenFOAM technology, in which the available 3D grid generator was employed to automatically create meshes containing hexahedra and split-hexahedra from triangulated surface geometries in Stereolithography (STL) format. The possibility to introduce local refinements and boundary layers makes this tool suitable for IC engine simulations. Grids are sequentially generated at target crank angles which are automatically determined depending on user specified settings such as maximum mesh validity interval and quality parameters like non-orthogonality, skewness and aspect ratio.
Technical Paper

Validation of Diesel Combustion Models with Turbulence Chemistry Interaction and Detailed Kinetics

2019-09-09
2019-24-0088
Detailed and fast combustion models are necessary to support design of Diesel engines with low emission and fuel consumption. Over the years, the importance of turbulence chemistry interaction to correctly describe the diffusion flame structure was demonstrated by a detailed assessment with optical data from constant-volume vessel experiments. The main objective of this work is to carry out an extensive validation of two different combustion models which are suitable for the simulation of Diesel engine combustion. The first one is the Representative Interactive Flamelet model (RIF) employing direct chemistry integration. A single flamelet formulation is generally used to reduce the computational time but this aspect limits the capability to reproduce the flame stabilization process. To overcome such limitation, a second model called tabulated flamelet progress variable (TFPV) is tested in this work.
Technical Paper

CFD Modeling of Gas Exchange, Fuel-Air Mixing and Combustion in Gasoline Direct-Injection Engines

2019-09-09
2019-24-0095
Gasoline, direct injection engines represent one of the most widely adopted powertrain for passenger cars. However, further development efforts are necessary to meet the future fuel consumption and emission standards imposing an efficiency increase and a reduction of particulate matter emissions. Within this context, computational fluid dynamics is nowadays a consolidated tool to support engine design; this work is focused on the development of a set of CFD models for the prediction of combustion in modern GDI engines. The one-equation Weller model coupled with a zero-dimensional approach to handle initial flame kernel growth was applied to predict flame propagation. To account for mixture fraction fluctuations which might lead to the presence of soot precursor species, burned gas chemical composition is computed using tabulated kinetics with a presumed probability density function.
Technical Paper

A Coupled Tabulated Kinetics and Flame Propagation Model for the Simulation of Fumigated Medium Speed Dual-Fuel Engines

2019-09-09
2019-24-0098
The present work describes the numerical modeling of medium-speed marine engines, operating in a fumigated dual-fuel mode, i.e. with the second fuel injected in the ports. This engine technology allows reducing engine-out emissions while maintaining the engine efficiency and can be fairly easily retrofitted from current diesel engines. The main premixed fuel that is added can be a low-carbon one and can additionally be of a renewable nature, thereby reducing or even completely removing the global warming impact. To fully optimize the operational parameters of such a large marine engine, computational fluid dynamics can be very helpful. Accurately describing the combustion process in such an engine is key, as the prediction of the heat release and the pollutant formation is crucial. Auto-ignition of the diesel fuel needs to be captured, followed by the combustion and flame propagation of the premixed fuel.
Technical Paper

Effects of In-Cylinder Flow Structures on Soot Formation and Oxidation in a Swirl-Supported Light-Duty Diesel Engine

2019-09-09
2019-24-0009
In this paper, computation fluid dynamics (CFD) simulations are performed to describe the effect of in-cylinder flow structures on the formation and oxidation of soot in a swirl-supported light-duty diesel engine. The focus of the paper is on the effect of swirl motion and injection pressure on late cycle soot oxidation. The structure of the flow at different swirl numbers is studied to investigate the effect of varying swirl number on the coherent flow structures. These coherent flow structures are studied to understand the mechanism that leads to efficient soot oxidation in late cycle. Effect of varying injection pressure at different swirl numbers and the interaction between spray and swirl motions are discussed. The complexity of diesel combustion, especially when soot and other emissions are of interest, requires using a detailed chemical mechanism to have a correct estimation of temperature and species distribution.
Technical Paper

Cold Flow Simulation of a Dual-Fuel Engine for Diesel-Natural Gas and Diesel-Methanol Fuelling Conditions

2021-04-06
2021-01-0411
In this work, the possibility to perform a cold-flow simulation as a way to improve the accuracy of the starting conditions for a combustion simulation is examined. Specifically, a dual-fuel marine engine running on methanol/diesel and natural gas/diesel fueling conditions is investigated. Dual-fuel engines can provide a short-term solution to cope with the more stringent emission legislations in the maritime sector. Both natural gas and methanol appear to be interesting alternative fuels that can be used as main fuel in these dual-fuel engines. Nevertheless, it is observed that combustion problems occur at part load using these alternative fuels. Therefore, different methods to increase the combustion efficiency at part load are investigated. Numerical simulations prove to be very suitable hereto, as they are an efficient way to study the effect of different parameters on the combustion characteristics.
Journal Article

Computational Modeling of Diesel Spray Combustion with Multiple Injections

2020-04-14
2020-01-1155
Multiple injection strategies are commonly used in conventional Diesel engines due to the flexibility for optimizing heat-release timing with a consequent improvement in fuel economy and engine-out emissions. This is also desirable in low-temperature combustion (LTC) engines since it offers the potential to reduce unburned hydrocarbon and CO emissions. To better utilize these benefits and find optimal calibrations of split injection strategies, it is imperative that the fundamental processes of multiple injection combustion are understood and computational fluid dynamics models accurately describe the flow dynamics and combustion characteristics between different injection events. To this end, this work is dedicated to the identification of suitable methodologies to predict the multiple injection combustion process.
Journal Article

CFD Modeling of Reacting Diesel Sprays with Primary Reference Fuel

2021-04-06
2021-01-0409
Computational fluid dynamics (CFD) modeling has many potentials for the design and calibration of modern and future engine concepts, including facilitating the exploration of operation conditions and casting light on the involved physical and chemical phenomena. As more attention is paid to the matching of different fuel types and combustion strategies, the use of detailed chemistry in characterizing auto-ignition, flame stabilization processes and the formation of pollutant emissions is becoming critical, yet computationally intensive. Therefore, there is much interest in using tabulated approaches to account for detailed chemistry with an affordable computational cost. In the present work, the tabulated flamelet progress variable approach (TFPV), based on flamelet assumptions, was investigated and validated by simulating constant-volume Diesel combustion with primary reference fuels - binary mixtures of n-heptane and iso-octane.
Technical Paper

Numerical and Experimental Investigation on Passive Prechamber Configurations Able to Operate at Low Engine Speed and Load

2023-08-28
2023-24-0031
Turbulent Jet Ignition (TJI) represents one of the most effective solution to improve engine efficiency and to reduce fuel consumption and pollutants emission. Even if active prechambers allow a precise control of the air-fuel ratio close to the spark plug and the ignition of ultra-lean mixtures in the main chamber, passive prechambers represent a more attractive solution especially for passenger cars thanks to their simpler and cheaper configuration, which is easier to integrate into existing engines. The main challenge of passive prechambers is to find a geometry that allows to use TJI in the whole engine map, especially in the low load/speed region, without the use of a second sparkplug in the main chamber. To this end, this works reports a CFD study coupled with an experimental investigation to overcome this limitation.
X